Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств»




Скачать 113.77 Kb.
НазваниеКонспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств»
Дата публикации03.10.2013
Размер113.77 Kb.
ТипУрок
www.100-bal.ru > Математика > Урок
План – конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств»
Цель урока:

  1. повторение и обобщение знаний учащихся по теме «Решение тригонометрических уравнений и неравенств»;

  2. подготовка к ЕГЭ.

Задачи:

  1. рассмотреть решение тригонометрических уравнений и неравенств использованием неравносильных преобразований, предлагаемых на школьном экзамене и на конкурсных экзаменах в ВУЗы;

  2. продолжить формирование навыков сознательного выбора способов решения;

  3. развивать потребность в нахождении рациональных способов решения;

  4. способствовать развитию умения видеть и применять рассмотренный материал в нестандартных, проблемных ситуациях.

План урока

Организационный момент

2 мин

  1. Самостоятельная работа учащихся по тестам ЕГЭ (части B)

9 мин

  1. Работа по теме урока

(Учителем разбираются уравнения и неравенства с использованием неравносильных преобразований)

15 мин

  1. Работа учащихся в группах с разноуровневыми заданиями

15 мин

  1. Итог урока

2 мин

  1. Домашнее задание (комментарий учителя).

2 мин

Ход урока: I Самостоятельная работы учащихся по тестовым заданиям ЕГЭ (используются компьютер и экран)

  1. Выбрать верный ответ

А) Решите уравнение 

1)  3) 

2)  4) 

Б) Решите уравнение 

1)  3) 

2) 4) 

В) Решите уравнение 

1)  3) 

2)  4) 

Г) Решите уравнение 2. Дополнительно Г) и Д).

1)  3) 

2)  4) 

Д) Решите уравнение 

1)  3) 

2)  4) 

2) Работа по заданиям ЕГЭ (часть В)

Отдельные записи выполняются учащимися в тетрадях; устное обсуждение решения, комментарий учителя.

А) Укажите наименьший положительный корень уравнения 

Ответ запишите в градусах

Решение:









1 не удовлетворяет условию 



 Ответ: 30

Б) Найдите сумму корней уравнения , принадлежащих промежутку  Ответ запишите в градусах

Решение:









Ответ: 60

Повторим приемы решения простейших уравнений и неравенств и сводимых к ним.

II. Рассмотрим более сложные уравнения и неравенства, при решении которых выполняются неравносильные переходы, уделили внимание использованию замены неизвестного – приему, позволяющему в некоторых случаях сложные уравнения и неравенства свести к простейшим. Объясняет учитель.

Пример 1

Решим уравнение 

Возведем уравнение в квадрат, получим следствие

, т. к , имеем





Так как 



то все числа  являются решениями данного уравнения, а из чисел решениями уравнения являются только те, для которых b=2m, то есть 

Ответ: 

Пример 2

Решим уравнение



Перенося все члены, уравнения в левую часть и приводя подобные члены, получим уравнение



являющееся следствием данного уравнения.



Проверка показывает, что число  является корнем данного уравнения, а число – нет. Следовательно, уравнения имеет единственный корень 

Ответ: 6.

Пример 3

Решим уравнение



Возведем уравнение в квадрат и приведем подобные слагаемые, получим уравнение , являющееся следствием данного уравнения. Возведя в квадрат последнее уравнение, получаем 

Проверим, являются ли найденные решения корнями исходного уравнения.





Отсюда следует, что если k=2m+1 – нечетное число, то число  является корнем уравнения, если k=2m – четное число, то число  не является корнем уравнения, значит, .

Ответ: 

Пример 4

Найдем все решения неравенства

,

принадлежащие отрезку 

Перенося все члены, неравенства в левую часть и применяя формулу синуса двойного угла, перепишем неравенство в виде





Так как все  справедливо неравенство , то на  неравенство (*) равносильно неравенству 

Решение – промежуток,  так как на  исходное неравенство равносильно неравенству , то искомые решения составляют промежуток .

Ответ:

Отметим, что при решении уравнений и неравенств не должен быть упущен вопрос о возможности приобретения или потери корней.

III. Учащиеся класса разбиваются на группы (по выбору)

1 группа: занимается самостоятельно на оценку

2 группа: работает, используя консультации учителя, с последующей проверкой полного решения учениками через экран.

а) Решить уравнение 

б) Решить уравнение 2

в) Найти все решения неравенства



принадлежащих отрезку 

а) Решение: Обе части уравнения определены и неотрицательны на множество всех действительных х.

Поэтому после возведения уравнения в квадрат получаем равносильное ему уравнение







Все эти числа являются решениями исходного уравнения.

Ответ: .

в) Решение: 



Из них отрезку  принадлежат те, для которых

 и 

Следовательно, надо найти целые k, которые удовлетворяют неравенству



Значит, условию задачи удовлетворяют лишь х из промежутков  , 

Ответ:   

(Дополнительно) б) Решение: 



Решим второе уравнение системы









D=25, 

 не удовлетворяет условию 



имеем 

Ответ: 

Задания для учащихся второй группы

а) Решить уравнение


б) Решить неравенство



в) Сколько корней имеет уравнение

 (тест ЕГЭ)

Решение: а) После потенцирования уравнения и применения формулы косинусы двойного угла, получим







Проверка показывает, что все числа серий  и являются решениями данного уравнения, но ни одно число серии  не является решением уравнения.

Ответ:

б) Введем новое неизвестное , получим 

Левая часть неравенства имеет смысл для любых . Решим неравенство на . Сначала решим уравнение



 удовлетворяют условию 

Решим неравенство



на 

Так как  функция  положительна, то неравенство, равносильно >0, множество всех решений которого составляет промежуток .

Решения исходного неравенства есть  и все 

1) 2)

 

Ответ:;

[, 

в) 



1) 2)







Ответ: ; уравнение имеет пять корней

IV. 1 группа учащихся сдает тетради на проверку; решения для 1 и 2 группы демонстрируются не экране.

Подводится итог урока: повторим решение тригонометрических уравнений и неравенств с использованием неравносильных преобразований, в которых требуется находить все решения и не упускать вопроса о возможном приобретении или потере корней. Приведенные примеры весьма поучительны при подготовке к ЕГЭ. Объявляются оценки.

V. Домашнее задание. (Запись на экране)

1) Решить неравенство



2) Решите уравнение



3) Решите уравнение



4) Решите неравенство



1. Решение: обозначим 









Ответ:

2. Решение: применив формулы двойного угла, получим















Ответ: 

3. Решение: 





Ответ: ;0;2.
4. Решение: 

пусть tg x=t, имеем 
1) 2)

 

 

все  все 

Ответ: (

Проверочная самостоятельна работа

(проводится на следующем уроку)

1 вариант

1.Сколько корней имеет уравнение  на отрезке ?

2. Решите неравенство



3. Решите неравенство



4. Решите уравнение



2 вариант

  1. Укажите корень уравнения , принадлежащий [2;3]

  2. Решите неравенство



  1. Решите неравенство



  1. Решите уравнение



Решение 1 вариант

  1. 



, 



, 



Ответ: 2.

2)







Ответ: (

3) 

,

,

, (верно при всех х)



Ответ: [

4)  

 





Ответ: 

Решение: 2 вариант

  1.  или 

 уравнение не имеет решений, 





Ответ: 2,5

  1. 







Ответ: 

3)















Ответ: 

4)  

 



Ответ:.





Добавить документ в свой блог или на сайт

Похожие:

Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств» iconТема урока: Иррациональные уравнения и неравенства
Цель урока – обобщить основные методы решения иррациональных уравнений и неравенств; повторить свойства показательной и логарифмической...
Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств» iconУрок математики в 6 ом классе по теме : «решение уравнений»
Обучающие цели: повторение, обобщение и систематизация знаний учащихся по теме «Решение уравнений» и их применение отработка практических...
Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств» iconУрок по алгебре и математическому анализу в 10 классе по теме «Решение...
Обучающая цель: Изучить возможности применения метода интервалов для решения тригонометрических неравенств
Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств» iconКонспект урока по алгебре и началам анализа. 10 класс. Тема: Решение...
Составление таблицы алгоритмов для решения простейших тригонометрических уравнений
Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств» iconУрок по теме "Решение простейших тригонометрических уравнений с применением икт"
Проверка знаний учащимися формул корней простейших тригонометрических уравнений и умений решать тригонометрические уравнения
Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств» iconКонспект урока по теме «Замена переменных в логарифмических уравнениях...
Развитие и обобщение знаний учащихся по теме Решение логарифмических уравнений и неравенств
Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств» iconУрок алгебры в 8 классе по теме: «Решение линейных неравенств с одной переменной и их систем»
Урок систематизации и обобщения изученного материала по теме «Решение линейных неравенств с одной переменной и их систем»
Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств» iconУрок математики (алгебры) в 9-м классе по теме: "Решение задач с...
Оформление кабинета: особым образом расставлены столы для работы в группах (количество групп – 4). На доске – плакат, на котором...
Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств» iconКонспект урока алгебры в 9 классе «Решение систем уравнений, используя...
Цель урока: Формирование и закрепление у учащихся навыков решения систем уравнений, используя теорему Виета
Конспект урока на обобщающее повторение алгебры в 11 классе по теме «Решение тригонометрических уравнений и неравенств» iconКонспект урока Предмет
Номер урока в системе изучаемой темы Заключительный (6-й) урок по теме «Решение уравнений». На предыдущем уроке каждой из пяти групп...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
www.100-bal.ru
Поиск